

Texas Delaware Basin DMG SWD Permit and Performance Parameters

Backdrop to 3P Report (Permit & Performance Parameters)

EnergyMakers is Industry Consultant – Water Management, Water Treatment, Permitting, Subsurface Specialists, 30+ years in O&G

Have executed BHP pressure surveys across Texas – every basin, every formation - since 2014 (going back to the 1960's!)

Subsurface research specialists; subsurface issues & communications for landowners and mineral owners, forensic due diligence on cause and effect

Extensive research on Seismicity relationship to Pressure & Operational Regimes

Apply findings to permit strategies for our clients – finding safe, wellperforming SWD locations

Opinions in this presentation are our own, and do not reflect, in any way, opinions of the Texas RRC.

7/15/2025

Status of Texas RRC Permian SWD Review Policies

TX RRC Presented Proposed Concepts to Industry Dec 3, 2024, Industry Feedback solicited

Official feedback rounds January and March, '25

Final policies / notice to operators published May 15, '25

Review Policies implemented June 1, 2023

Proposal applies to:

- Permian Wells
- Newly Permitted Wells only

125 Parameters include Texas RRC Algorithms, ea. Block

	A		в	С	D	Е		F	G	Н		N O P Q	в	S	т	U
	For an AOR Well: (0.25 MILE "RULE")		Affirm	Not Affin			PROGRAM INPUTS AR	E IN LIGHT BLUE		VB 14B2 FLAG	YES		CAL	CULATIONS FOR VOLUMETRIC AND INJECTION RATI	E	
						1.00										/6 psi
				1 1112				u l								
									BIF							
	5		FAJJ		_						P					
	c		_	MDUII			TEARS TO CALCOLAT	COMOLATIVE VOLOME IN	DECTED IN AUK		4-					
	2 EDOM CONFINEMENT CALCULATIONS, CREEN											$\Delta p =$				
	ADE THERE WELLS IN AOD WITH NO VELL	DATA2		0.67	_				AD RESPONSES			$A * h * \emptyset * c_t$				
											,					
		Y OF THE FULLOWING CRITERIA	NU									$A * h * \emptyset * c$				
												$a = \frac{n + n + v + c_t}{m} * \Lambda n$				
												4 5.615 * t $^{-r}$				
									D RESPONSE							
		OPER_DELQ				15%	POROSITY FOR YOLU	IE CALCULATIONS								
	IA ORPHAN WELL LIST															
	15															
			148			*****	QUALITY IMPAIRMENT	USED IN THIS EVAL		VL_14B2_VELL_OTHER						
	7 (1/DISTANCE FROM INJECTION WELL) * AG	SE OF WELL " (1/DATA QUALITY IM	PAIRMEN	T)		148	OVERALL AOR ASSESS	MENT VALUE			A max	BHIP is self regulating on injection	rate MDIV	/ ALLOWABLE FOR 5 YEARS TO NOT EXCEED MBHIP	1,26	/6 BWPD
	8 MB	HIP reduction due to AOR review		0.00		131	(PSI) INCREASE FOR 5	-YEARS OF INJECTION						E VOLUME IN BBLS FOR 1 MILE AOR	5,872,634,03	4 BBLS
	19								DN							
	20 VOLUME (MMBBL): PROJECTED INTO AOR	USING APPLICAN'T REQUESTED	36 50													
												2 mile AOR as a consta				
	22		1,200			0.20	e sarry committeer				The per					
	A * h * 0 * c														0.047	
	$\frac{A + h + \psi + c_t}{a}$													oores.		
	$\frac{q}{r} = \frac{5.615 * t}{5.615 * t}$	Ŕ	Þ	• c		D			POAD COMMISSION	OFTEVAS	55 T W	elis do a 2.5 mile AUR review every 5 year	5			
		OPERATOR RESPONSES TO RAD QUESTIONS SSURE QUESTIONS	BLUE CELL	LS - IMPUT		ress - Pressure vs		KAII						: :I · · CIB)		
		uar the operator's response for bottomhole "pore" prezzure?		2,045 priq	M.S.D. +	1,626			OIL AND GAS DIVIS.				acabase (Similar to CID)		
		r the frac gradient in the layer above the injection interval: r the frac gradient in the injection interval?		0.670 prifft	s,==	\backslash				A*	07/2016 CICLE					
		z the frac gradient in the layer below the injection interval? IUS CALCULATION QUESTION		0.700 prifft				INTO A FOR	RMATION NOT PRODUCTIV	E OF OIL AND GAS	trep	ort due within 30 days of new well complet	on			
		r the five- (5) year estimate for radius of pressure influence?		2,640										RAILROAD COMMISSION OF TEXAS		
		o sporater previded a list of artificial ponotrations within the radius of pressure	<mark>(area of</mark> YE:	(S	a,=					2. Operator 2-310.				OIL AND GAS DIVISION	Form II 4	
		CTION SOURCE QUESTION e aperator anruered the quertion about the origin of the water being injected in	statkiru YE:	IS	Depth			3. Operator Address.							05/2004	
		TION PRESSURE ESTIMATES		20.000 hund				4. County		5. RRC District No.				APPLICATION TO INJECT FLUID INTO A RESERVOIR PRODUCTIVE OF OIL OR GAS		
		r the internal diameter of the org or the being used for injection?			s,==			6. Field Name		7. Field Number				1.Operator name 2. Operator P-5 No (as shown on P-6, Organization Report)		
		s the operator's artimate for total friction pressures (if not available onter zero ESTIMATED FRICTION - 214 prig FRICTION VALUE USED - 214	aj: A prig	U priq				8. Lease Name		9. Lease/Gas ID No.				3.Operator Address		
		DATA INPUT BY RRC REVIEWER FROM H1 (APPLICATION)			i, m											
		r the M.S.I.P. requested by the operator?								enter of nearest town). 11. No. acres in sease						
	37 Cumulative RATE for this AUR 22 Weak	r the true vertical depth of the top perf?		3,248 ft.		Streen Pressure (g	PR0		istance and direction from survey lines				ile or no			
	38 Cumulative Volume for this AOR			5,190 Pt	Upper Darvier	1aj	jailes Biaral	13. Latitude/Longitude, 15 known (Optional)	Lat.	Long	Con	AOR well list		8. Lease Name 9. Lease/Gas ID No		
	39 zs Initial	pure prezzure gradient in layer abuve the injection interval?		0.465 pri/f OP	ERATOR: WES Water	Haldingr LLC		14. New Permit: Yes 🗆 No 🗆	If no, amendment of Permit No.	UIC*				10. Check the Appropriate Boxes: New Project Amendment		
	40 - No more permits in the Bell Canyon OR Depthy hims	pare prezzure gradient in the injection interval (from RAD rezponze)		0.630 priff LE				15. Reason for amendment: Pressure	e 🗌 Volume 🗌 Interval 🗌 Comm	uercial 🗌 Other (explain)	mo	e permits in the Bell Canyon OR D	epth Lim			
	41 - Volume based on single injector (applicant's ³ / ₂) ^{bitistp} Overby	pare prezzure gradient in the layer belau the injection interval? urden aradient?		0.465 priff LE	ASE/GAS ID NO.: DBM (LL NO.: 1D	156-2-27		16.Well No. 17.API No.	18.Date Drilled	19.Total Depth 20.Plug Date, if re-e	st oft	en overpressured now w/large number of	existing in		sure 🗆	
	12 Extern-	valatreez gradient (pazzibly testanis - leave az zera withautzalid data)		0 priff AP	1NO.:389-41009		916 7010	Casing Size Setting	Hole Size Casing Cement	Cement Top of Top Determined by	the	most older penetrations from vertical wells		RESERVOIR DATA FOR A NEW PROJECT		
	43 x INPU	IT FROM BRC REVIEWER	DROP DO	WH LIST LO				21. Surface Depths	Weight Class	Sacks (*) cement	ng d	eeper into Cherry/Brushy/Bone Springs at	oids BUG	11 Name of Parameters 10 Ultralians		
	44 14 Reck T	[ype Inj Interval	Sandr	stone	"			22. Intermediate 23. Long String			rpre	ssured Bell Canyon can improve isolation	of zones l	(e.g., dolonite, line) 13 Type of Tran	stone, sand, etc.)	
	45 seck T	lype Bolau Injection P. by maratar request as by confining stressor - 0.500 pri//s - 5 240 pri - 5 5 600	Cley/S	Shalo	σ ₁ =	* (a a	$(n_1) + \alpha n_2 + \sigma_{-+}$	24 Line						(another the and a statistic test	- (
	46			_	ⁿ min 1-1	, (vp u	ro/ ro/ ext	· · · · ·			om	olete AOR well data - must be loca	ed / mo		re (psig)	
	11 STRE	ESSES PROTIDED IN RAD RESPONSES	- HOT CO	NHED RED ONFINED				20. Depth to base or Deepest r reshwater Zone	If you Differents	n preusen: Yes 🗆 30 🗆				ne. Average nervonan Cermedonny p		
	II ESTIMA	IATED INJECTION PRESSURE TOP OF INJ INTERVAL	3,0:	086 pri 862 pri				ao. Munisinge cement? Yes	it yes, b thepth:f	0. SACKS: OF CREATE:				IN. ON PROJECT DATA		
	et ESTIMA	IATED INJECTION PRESSURE BOTTOM OF INJ INTERVAL	3,9	185 pri				29. Bridge Plug Depth: f	Size: in.	acker Depth:	ft.					
	42 ESTIMA 43	HILD CONFINING STRESS IN LOWER LAYER	4,0	/31 p/i				32. Cement Squeeze Operations (Lit	ter and a secks of cement a	and top an ent top an ether posed or Complete	rte.):					
								33. Injection Interval from	ft. 34. Name of Disp	por rmation						
	4 Poizor	in's Ratia in Clay/Shale zane belau the injection interval - 0.3 (unitless)		0.30					two miles? Yes 🗆 No 🗆					24. If for commercial disposal, will non-hazardous oil and gas waste other than produced water be disposed?	Yes 🗆 No 🗆	
	43							It yes, Depth ft. and Re	eservoir Name							
	58	USING INITIAL BHP PRIOR TO INJECTION						36. Maximum Daily Injection Volume	bpd 37. Estimated Av	verage Daily Injection Volume by	bpd				NORM	
	52 53 ESTIM	ATED CONFINING STRESS IN UPPER LAYER	0.7:	780 prifft				38. Maximum Surface Injection Pressure			ptig			Natural Gas Polymer Other (explain)		
	se ESTIM	ATED FRAC GRADIENT - INJECTION INTERVAL ATED CONFINING STRESS IN LOWER LAVER	0.73	735 prifft											er by formation, or by	
	15 LS104	A A A A A A A A A A A A A A A A A A A	0.7	ere print						-				. prove		
Image: Construction of the state of the			GREEN-CON	NEINED RED				41. Are fluids from leases other than lease ide	entified in Item 8? Yes 🗆 No 🗆 42							
Image: Construction of the state of the	57	•	- NOT CO	INFINED	IDDERT CONATION	fran yradirol		43. If commercial disposal, will non-hazardou	us oil and gas waste other than produced wa	•				CERTIFICATE I declare under penalties prescribed in Sec. 91.143, Texas Natural Sinnature	Date	
Image: Construction of the state of the	st ESTIM	ATED INJECTION PRESSURE TOP OF INJINTERVAL	2,5	962 pei ($\tau_1 = -\frac{v}{v}$	-*(a -)	$(an) + (an) + \sigma$			Vater CO2 N2 Air H2S	.s □			Resources Code, that I am authorized to make this report, that this report was prepared by me or under my supervision and direction.		
Image: Construction of the state of the	ESTIMA	ATED INJECTION PRESSURE BOTTOM OF INJ INTERVAL IATED CONFINING STRESS IN LOWER LAYER	3,9	985 pri 121 pri	n _{min} 1-1	0 00 0	"Po) · "Po ' Vext	LPG NORM Natural G	Gas 🗌 Polymer 🗌 Other (explain)	0				and that the data and facts stated therein are true, correct, and complete, to the best of my knowledge.		
I an dafa and in a dira dira dira dira dira dira dira di	12 13				0 ₈₆₃₀ =	least principle hori:	zontalistress	CERTIFICATE I declare under penalties prescribed in Sec. S	91.143, Texas Natural					Filone Fax	[
I an dafa and in a dira dira dira dira dira dira dira di	64 55				v = poi $\sigma_y = ve$	rtical (overburden)	stress	Resources Code, that I am authorized to make report was prepared by me or under my supervis	te this report, that this Signature ision and direction, and	Date				For Office Use Only Register No. Amount \$		
7/15/2025 Energy Makers 3P Report for Texas Reconcerence Attendees 4	6 12				a = bis $p_b = po$	e s constant (assum re pressure	e 1)		orrect, and complete, to Name of Person (typ	pe or print)				See Reverse Side for Required Attachments	J	
1/15/2025 Energy Makers 3P Report for texas made wood and the address 4					(Male	aternal stress (tecto		FERAFEIGELISEANL	Phone	Tax A ##/6/NE of o o o				Α		
	//15/2025		E	rinetgy	у імак	els.	эн кероп то	I TEXAS MICHOLIN		DAMAGE FRANCE CS				4		

3P Report: a Rapid Screening Toolkit organized by Topic

- SWD Permit and Performance Feasibility
- 125 Parameters / Calculations per Block

Permit and Performance Parameters

Chapter Headings	Number of Parameters	Number of Maps
A Metadata	14	1
B Fracture Gradient	7	7
C Bottomhole Pressure Gradient	17	17
D Surface Pressure Gradient	9	1
E Penetration Data Completeness	21	15
F 1/2 Mile Radius of Review (Block Statistical, RRC Reqs)	4	4
G 2 Mile Radius of Review (Block Statistical, RRC Reqs)	9	8
H Protection of Injection Interval (Custom)	Custom	Custom
I Protection of Freshwater	12	7
J Environmental Risks & Considerations	19	17
K SWD Performance Indicators	33	10
L Performance MDIV Calculations	4	4
M Performance MSIP Calculations	11	4
N FIX Voluntary Well Remediation Indicators	6	6
O Confinement Intervals / (Custom Option)	4	Custom

7/15/2025

Energy Makers 3P Report for Texas RRC Conference Attendees

Permit & Performance Feasibility Parameters

- Statistics (planning)
- Location ID /Screening/Risking (focus)
- Permitting & Compliance Data Packages/ (permitting)

	Total Block Count	Blocks with SWD
Culberson	117	14
Loving	22	20
Reeves	82	58
Ward	28	13
Winkler	35	7
Pecos	103	14
	387	126

Average Block size is 2.5 X larger than a 2 Mile radius AOR

But First...a little background

How did we get where we are today?

What were the drivers?

How do these "risks" relate to each other?

7/15/2025

Energy Makers 3P Report for Texas RRC Conference Attendees

Subsurface

Environmental

Risk Factors in

the Permian

The Wall of Water Coming from New Mexico to Texas

ENERGY MAKERS 3P REPORT FOR TEXAS RRC CONFERENCE ATTENDEES

<u>After</u> we have recycled all we can use in Oil and Gas....

...the left over Net Produced Water (PW) needs an outlet. Currently, SWD & EOR injection are the primary outlet. SWD and EOR growth is increasingly limited, leaving a growing surplus (black line).

Energy Makers 3P Report for Texas RRC Conference Attendees

Subsurface

Environmental

Risk Factors in

the Permian

DEEP SRA BANS RESULTS IN PW REDIRECTION TO SHALLOW SWD

Orphan Wells and Aging Infrastructure

- Orphan wells can be shallow, leaky subsurface pollution conduits.
- Aging infrastructure and compromised integrity means they were not built for today's pressures.
- The vast majority of Orphan wells are in old <u>shallow</u> EOR fields.
- Orphan wells can be close to groundwater and freshwater formations

Texas RRC "Raising the Bar" for new Permian SWD Permits

(EnergyMaker's synopsis of proposed new permitting concepts under discussion) Ch Ch Ch Ch Changes.....

Expanding the AOR : ¼ mile to 2 miles Limited by local Frac Data Limited by local & projected Operating BHPs Daily/Monthly Reporting and Submission Reduce exposure to:

- Freshwater contamination
- Leaky /compromised nearby wells
- Unconfined intervals
- Old Wells / compromised infrastructure
- "unknown unknowns" (missing data)

Will regulate shallow SWD mainly on pressure (BHPs)
 Will regulate deeper SWD wells based on seismic risk

Background: Understanding Induced Seismicity is..... "Complicated"

+

 \mathbf{O}

+

0

Seismically Active Areas in The Permian

Pressure Problems are different than Seismic Problems

7/15/2025

Energy Makers 3P Report for Texas RRC Conference Attendees

Contributors to Induced Seismicity are multifaceted and complex

Presence and proximity to faults and fault networks

Fault orientation relative to local stress fields

Pore pressure and pathways

Fault friction and structure, etc.

Rock Strength / Brittleness

Temperature

Pathways to deep basement faults

Fluid / pressure balance in reservoir

Can be complex:
Higher permeability
formations provide more
pathways for fluid/pressure
transmission and
dispersion,

Higher permeability faults can allow pore pressure diffusion to be channeled long distances, and

Lower permeability faults can serve as a bottleneck allowing stress to accumulate Cumulative injected volume Injection rate Injection pressure Fluid temperature Injection depth etc.

Permeability Ex:

Formation

Prevailing Wisdom about Induced Seismicity.... • Doesn't always prove to be true when you look at the data.

See Presentation Details at Conference:

Claim #1: "High Local SWD Volumes Induce Seismicity" Claim #2: "Deep SWD Volumes Induce Seismicity" Claim #3: "High Pressures Induce Seismicity"

Midland Basin Bottomhole Pressures (psi/ft) by County and Depth Interval - 2021

BottomHole Pressure Gradient PSI/FT	≤ 0. 5	0.50-0.60	0.60-0.70	0.70-0.80	0.80-0.90	0.90+
Texas RRC References for Environmental Concerns		Can Flow to Surface	Moderate risk to USDW	Elevated risk to USDW	Likely Fracture Initiation	Fracture containment issues

Midland Basin Counties Avg. Bottomhole Pressure Gradient / County (psi/ft)

Ft. Subsurface	County A	County B	County C	County D	County E	County F	County G	County H	County I	County J	County K	County L	County M	County N	County O	County P	County Q	County R	County S	County T	County U	County V	County W	County X	County Y	County Z	County ZZ
-							0.61									0.81		0.92	0.97	0.67	0.84						0.99
1,000	0.78	0.46	0.46	0.87	0.72		0.85		0.93						0.81	0.88	0.88	0.75	0.71	0.76		0.83		0.69			0.74
2,000		0.59					0.85		0.79		0.61			0.77	0.60	0.80	0.83	0.74	0.62	0.76	0.73	0.52		0.57	0.60		0.63
3,000	0.91	0.66	0.73	0.74		0.66	0.68	0.64	0.73	0.93	0.64	0.67	0.71	0.75	0.62	0.78	0.83	0.56	0.65	0.76	0.70	0.65	0.71	0.69	0.66	0.65	0.52
4,000	0.77	0.74	0.70	0.80	0.74	0.69	0.59	0.64	0.68	0.71	0.63	0.67	0.66	0.65	0.54		0.75	0.65	0.57	0.75	0.68	0.70	0.69	0.64	0.66	0.60	0.88
5,000	0.81	0.67	0.67	0.72	0.71	0.66	0.65		0.68	0.72	0.60	0.72	0.59	0.61	0.47		0.62	0.69	0.51		0.57	0.53	0.61	0.57	0.63	0.55	0.47
6,000		0.63	0.65	0.63	0.66	0.69			0.64	0.68	0.63	0.49	0.58	0.52	0.48	0.48	0.62		0.53	0.56	0.48		0.58	0.50	0.33	0.48	0.46
7,000		0.66	0.69	0.71			0.45		0.48	0.53	0.48	0.49	0.57	0.61	0.65	0.51	0.63	0.67		0.77		0.53	0.48	0.49	0.54	0.53	0.50
8,000		0.64	0.51	0.49		0.56	0.51			0.49	0.56	0.54	0.57	0.57	0.53	0.59		0.62		0.68		0.51	0.72	0.49	0.56	0.42	0.66
9,000		0.41		0.47						0.49	0.54		0.64	0.45	0.62					0.56	0.58			0.46		0.30	0.60
10,000		0.51		0.51						0.49	0.51	0.53			0.58						0.65	0.57	0.51		0.49	0.46	
11,000	0.47	0.35								0.47	0.45	0.57	0.45		0.45						0.60	0.60	0.48	0.58	0.46		
12,000		0.47	0.43							0.46	0.53	0.56					Ener	gyN	Iake	ers .	0.60		0.61	0.58			
13,000		0.44	0.47								0.49	0.54						Adv	isory G	roup			0.59	0.56			

Earthquake Correlations to Pressures: Central Oklahoma

-													ifur	ca	ah ted	La	nd									Ene	rgy]	Mal ^{dvisory}	KETS Group	-
Injection Depth Range (ft)	Beckham	Roger Mills	Dewey	Custer	Washita	Caddo	Blaine	Kingfisher	Canadian	Grady	Mcclain	Cleveland	Oklahoma	Logan	Payne	Lincoln	Pottawatomie	Seminole	Hughes	Okfuskee	Creek	Tulsa	Okmulgee	Wagoner	Muskogee	Mcintosh	Pittsburg	Latimer	Haskell	Leflore
0-999	0.40									1.51					0.45	0.44		0.59	0.66	0.54	0.46	0.44	0.49	0.54	0.73					
1,000+	0.54	1.00	0.57		1.27	0.79			0.85	0.68	0.84	0.82		0.81	0.61	0.59	0.48	0.53	0.59	0.51	0.59	0.55	0.51	0.56	0.58		0.64	0.92	0.54	0.89
2,000+	0.44	0.86				0.78		0.99	0.81	0.61	0.56	0.61	0.62	0.56	0.51	0.54	0.54	0.52	0.51	0.51	0.51	0.45	0.50		0.60	0.56	0.64	0.95		0.63
3000+	0.64		0.81		0.93	0.69	0.63	0.69	0.48	0.57	0.63		0.55	0.55	0.53	0.52	0.50	0.50	0.51	0.50	0.46	0.47	0.50		0.62	0.66	0.66			
4000+	0.68	0.65	0.64	0.66	0.79	0.58	0.64	0.63	0.70	0.65	0.59	0.56	0.58	0.55	0.54	0.52	0.52	0.51	0.52	0.53	0.50		0.47						0.46	
5000+	0.56	0.66	0.61	0.52	0.70	0.57	0.60	0.59		0.61	0.70	0.59	0.52	0.54	0.51	0.49	0.54	0.52	0.48	0.47										0.48
6000+	0.44		0.61			0.53	0.60	0.56	0.64	0.65	0.61	0.54	0.54	0.53	0.52	0.49	0.48	0.50	0.54	0.51						0.56				
7000+			0.59			0.46		0.59	0.56	0.62	0.53	0.54	0.59	0.52	0.50	0.48	0.48	0.49	0.63	0.47							0.63			
8000+	0.57			0.67		0.61	0.44	0.50	0.56	0.62	0.59	0.55	0.55	0.52	0.50	0.50	0.48	0.48	0.72								0.58			
9000+			0.54			0.53		0.58	0.56	0.55	0.54		0.50			0.47			0.70											
10000+			0.53			0.54				0.62			0.48												0.48			0.51		
11000+													0.50						0.54											
12000+						0.56																								
16000+										0.56																				
17000+																					0.46									

Earthquake Correlations to Pressures: State of Oklahoma

																			_																																_														
Injection Depth Range (ft)	Un	No Ide	orth erpro	err ess	n O ure	kla ed (ho Oc	mc :cc	a C Isic	ou	ntie I SI	es: hal	Sul Ilov	bst v E	an	tia ep	lly tio	ns)																			na .an			ties De	:				En	erg	gyN Ad	Ia visory	ker Grou	Տ ւթ		E	OR						hon to l				s: :hen	nes	
0-999						0	.43							0.43	0.46	6 0.	71 0.	.67	().40				1						1.51				Ι	0.4	5 0.4	44	0.5	9 0.	66 0.5	54 0.4	46 0.	.44 0.	.49 0.	54 0.	73						0.44		0.48		0.60		0.72).46	0.8	1 0.65		0.70		0.64
1,000+	0.57 0.	.44 0.).74	1.	.06	0	.82			0.67	0.66	0.54	0.59	0.55	0.53	3 0.	49 <mark>0</mark> .	.62 0	.53 ().54	1.00	0.57		1.27	7 0.79	9		0	.85	0.68	0.84	0.82		0.8	0.6	1 0.5	59 0.4	8 0.5	3 0.	59 0.5	51 0.	59 0.	.55 0.	.51 0.	56 0.	58	0.	64 0.	92 0.5	64 0.8	9		0.71	0.49	0.62	0.58	0.60	0.58 (0.69 0.6	60 0.7	2 0.71	0.67	0.67 0	.88 0.69	}
2,000+	0.55 0.	47 0.	.45	0.	.72	0	.67 0	.74		0.55	0.60	0.52	0.55	0.51	0.45	5 0.	53		().44	0.86				0.78	8	0.	99 0	.81	0.61	0.56	0.61	0.6	2 0.56	0.5	1 0.5	54 0.5	4 0.5	2 0.	51 0.5	51 0.	51 0.	.45 0.	.50	0.6	60 0.	.56 0.	64 0.	95	0.6	3		0.64		0.58	0.67	0.58	0.58 ().54 0.5	55 0.6	3 0.66	0.62	0.62 0	.55 0.53	5
3000+	0.50 0.	47 0.	.49 0.	.55 0.	.53 0	.64 0.	62	().68	0.55	0.56	0.52	0.52	0.50)				().64		0.81		0.93	3 0.69	9 0.6	3 0.	69 0	.48	0.57	0.63		0.5	5 0.55	0.5	3 0.5	52 0.5	0 0.5	0 0.	51 0.5	50 0.4	46 0.	.47 0.	.50	0.6	62 0.	66 0.	66					0.47		0.55		(0.60 (0.62 0.5	53 0.6	6 0.63	0.66	0.71 0	.77	
4000+	0.49 0.4	49 0.	.46 0.	68 0.	58 0	.51 0.	47 0	.53 ().56	0.52	0.54	0.50	0.54	0.50)				C	.68	0.65	0.64	0.66	0.79	0.58	3 0.6	4 0.	63 0	.70	0.65	0.59	0.56	0.5	8 0.5	0.5	4 0.5	52 0.5	2 0.5	1 0.	52 0.5	53 0.	50	0.	.47					0.4	16	0.64		0.59		0.53		(0.61		0.6	6 0.64	0.65	0.70	0.5	ļ.
5000+	0.66 0.	.56 0.	.46 0.	.52 0.	.52 0	.48 0	.47 0	.50 ().63	0.55	0.53	0.50	0.50	0.52	2		0.	.48	().56	0.66	0.61	0.52	0.70	0.5	7 0.6	i0 0.	59		0.61	0.70	0.59	0.5	2 0.54	0.5	1 0.4	49 0.5	4 0.5	2 0.	48 0.4	17									0.4	8				0.61		(0.60	0.5	54 0.6	5 0.62		0.50 0	.69 0.5	0.56
6000+	0.	53 0.	.48 0.	.65 0.	.46 0	.44 0	.50 0	.53 ().57	0.57	0.52	0.50	0.53						().44		0.61			0.53	3 0.6	0 0.	56 0	.64	0.65	0.61	0.54	0.54	4 0.53	0.5	2 0.4	49 0.4	8 0.5	0 0.	54 0.5	51					0.	.56									0.52	(0.58	0.7	70 0.6	8 0.59	0.50	0	.73	0.50
7000+	0.	52 0.	.62 0.	66	0	.56 0	48 0	.49 ().54	0.52	0.55	0.50	0.52									0.59			0.46	ô	0.	59 0	.56	0.62	0.53	0.54	0.59	9 0.52	2 0.5	0 0.4	48 0.4	8 0.4	9 0.	63 0.4	17						0.	63									(0.65	0.6	60 0.5	5 0.53		0	.51	
8000+		0.	.46 0.4	.49 0.	.62	0.	47 0	.48 ().54	0.50		0.47							().57			0.67		0.6	1 0.4	4 0.	50 0	.56	0.62	0.59	0.55	0.5	5 0.52	2 0.5	0 0.5	50 0.4	8 0.4	8 0.	72							0.	58									(0.57	0.7	70 0.4	0.55		0	.53	
9000+					0	.66 0	44 0	.50 ().52	0.50	0.52											0.54			0.53	3	0.	58 0	.56	0.55	0.54		0.50	0		0.4	47		0.	70													0.48						0.7	72 0.4	0.53		0	.55	
10000+					0	.48 0	45	().57													0.53			0.54	4				0.62			0.48	В											0.4	48		0.	51										0.6	64 0.4	6 0.60				
11000+						0	.46																										0.5	0					0.	54																					0.49				
12000+																									0.56	6																																							
16000+																														0.56																																			
17000+																																									0.4	46																							

Earthquakes: State of Oklahoma, by County

Earthquake Correlations to Pressures: State of Oklahoma

Claim # 1: Local Injection Volumes Drive Seismicity

- Development of complex patterns of anthropogenic uplift and subsidence in the Delaware Basin of West Texas and southeast New Mexico, USA
- Peter Hennings^{a,*}, Scott Staniewicz^b, Katie Smye^a, Jingyi Chen^b, Elizabeth Horne^a, Jean-Philippe Nicot^a, Jun Ge^a, Robert Reedy^a, Bridget Scanlon^a
- ^a Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, P.O. Box X, Austin, TX 78713-8924, United States of America ^b Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78713-8924, United States of America

Annotations and commentary to follow by Energy Makers Advisory Group

Local versus "Far Field" Effects

Development of complex patterns of anthropogenic uplift and subsidence in the Delaware Basin of West Texas and southeast New Mexico, USA

Peter Hennings^{a,*}, Scott Staniewicz^b, Katie Smye^a, Jingyi Chen^b, Elizabeth Horne^a, Jean-Philippe Nicot^a, Jun Ge^a, Robert Reedy^a, Bridget Scanlon^a

^a Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, P.O. Box X, Austin, TX 78713-8924, United States of America b Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78713-8924, United States of America

InSAR Surface Elevation Change

Development of complex patterns of anthropogenic uplift and subsidence in the Delaware Basin of West Texas and southeast New Mexico, USA

Peter Hennings^{a,*}, Scott Staniewicz^b, Katie Smye^a, Jingyi Chen^b, Elizabeth Horne^a, Jean-Philippe Nicot^a, Jun Ge^a, Robert Reedy^a, Bridget Scanlon^a

^a Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, P.O. Box X, Austin, TX 78713-8924, United States of America
 ^b Department of Aerospace Engineering and Engineering Mechanics, The University of Texas at Austin, Austin, TX 78713-8924, United States of America

"Far Field" injection and production effects play a dominant role in Induced Seismicity – slow, long term, subsurface pressure communication pathways

Repeat: Contributors to Induced Seismicity are multifaceted and complex

EX:

ermeability

ñ

Formation

Reservoir Conditions Ex:

Presence and proximity to faults and fault networks

Fault orientation relative to local stress fields

Pore pressure and pathways

Fault friction and structure, etc.

Rock Strength / Brittleness

Temperature

Pathways to deep basement faults

Fluid / pressure balance in reservoir

Can be complex:
Higher permeability formations provide more
pathways for fluid/pressur
transmission and dispersion,
Higher permeability faults
can allow pore pressure

diffusion to be channeled long distances, and

Lower permeability faults can serve as a bottleneck allowing stress to accumulate Cumulative injected volume Injection rate Injection pressure Fluid temperature Injection depth etc.

EX:

Chapter B Fracture Gradient

Increased Reservoir Pressure

SIMPLE DISTRIBUTION OF ELEVATED PORE PRESSURE DUE TO PRODUCED WATER INJECTION

BottomHole Pressure Gradient PSI/FT	≤0.5	0.50-0.60	0.60-0.70	0.70-0.80	0.80-0.90	0.90+
Texas RRC References for Environmental Concerns		Can Flow to Surface	Moderate risk to USDW	Elevated risk to USDW	Likely Fracture Initiation	Fracture containment issues

7/15/2025

Energy Makers 3P Report for Texas RRC Conference Attendees

3P Report: Bottom Hole Pressure Gradients, DMG

See Map Details at Conference!

Likelihood of injecting <u>below</u> DMG Frac Pressure?: (Yes, Tam)

By County Percent of Wells w/ 2023 BHP =< Local Estimated DMG Frac Gradient

Likelihood of injecting <u>above</u> DMG **Frac Pressure**?:

Midland 63% 25% 349 76% 58% 83% 673 10 83% 90 **EnergyMakers** Esri, NASA, NGA, USGS, Sources, Esri, Tom NOAA, USGS, © OpenStreetMap contributors, and the GIS User **Advisory Group** Community

Under new guidance, the following % wells, injecting above estimated frac pressures for the Injection Interval, will require proof of upper and lower confinement with frac pressures above injection interval BHPs

7/15/2025

By County

Percent of Wells

w/ 2023 BHP >=

Local Estimated

DMG Frac

Gradient

Consequence?

SWD Permit Applicants will be required to profile Upper and Lower Confinement Intervals:

- Are 25' thick or greater (relatively easy!)
- Have fracture pressures greater than anticipated injection Zone operating pressures
- Provide reliable confinement: prohibit fluid flow, (contemplate fractures, karsts, permeability, etc.)
- In the DMG, candidates may include the Castille or San Andres (upper confinement), or Cutoff Shale/Avalon/ Bonespring (lower confinement)
- Exercise requires geologic scrutiny not a "layup".

7/15/2025

Chapter B Bottomhole Pressure Gradients (and impact on Maximum Daily Allowable Injection Volumes)

Translating TRRC Guidance to Maximum Daily Injection Volumes

MDIV is calculated for Average BHPS in the 2 Mile AOR.

In the Delaware Basin on average 76% of DMG blocks will be restricted to 10,000 – 20,000 BPD.

Detailed Maps Available at Conference Proceedings

Maximum Daily Injection Volumes

m						
	40,000	30,000	20,000	10,000	10,000	10,000
n	BPD	BPD	BPD	BPD	BOD	BPD
S	Energ	y Makers 3P Report for	Texas RRC Conference	Attendees		

Similarly, 59 % of blocks in the Shallow Midland Basin would on average be restricted to 10,000-20,000 BPD, (41% at 30,000+ BPD) Detailed Maps Available at Conference Proceedings

Maximum Daily Injection Volumes	40,000 BPD	30,000 BPD	20,000 BPD	10,000 BPD	10,000 BOD	10,000 BPD	

40%

Finding Relief From High BHPs is possible

Percent of Blocks with BHP IPG ≤0.6 psi/ft

Across the Delaware, **18%** of active DMG Blocks have BHPs =<.6psi/ft, and might allow MDIV as high as 30,000 BPD Detailed Maps Available at Conference Proceedings

Tip #1: In the Midland Basin, Lower relative Pressures are obtained with <u>Depth</u> in many areas

Energy Makers Advisory Group									
EOR INJECTORS	Active Count	≤0.5	0.50-0.60	0.60-0.70	0.70-0.80	0.80-0.90	0.90+	Min Injection Depth	Max Injection Depth
Grayburg	406	30	204	76	89	7	0	4,059	4,902
San Andres	703	29	154	164	186	87	83	3,900	6,960
Clear Fork	418	11	75	253	78	1	0	3,700	7,360
Wolfcamp	52	10	5	20	17	0	0	7,000	9,018

Data Source: EnergyMakers Advisory Group 2024 Permian BHP Survey

SWD INJECTORS	Active Count	≤0.5	0.50-0.60	0.60-0.70	0.70-0.80	0.80-0.90	0.90+	Min Injection Depth	Max Injection Depth
Grayburg	12	0	4	8	0	0	0	4,220	5,080
San Andres	71	7	23	21	12	8	4	3,877	6,452
Clear Fork	13	0	3	7	3	0	0	3,900	6,820
Devonian	27	9	11	5	2	0	0	5,000	12,800
Ellenburger	30	19	9	2	0	0	0	6,215	13,386

Data Source: ZnergyMakers Advisory Group 2024 PermiaheBHPFSDeveryert for Texas RRC Conference Attendees

Midland Avg. BottomHole Injection Pressure Gradient (psi/ft) by Well Type

Tip # 2: Stay away from shallow EOR plays...and possible pressure communication

SHALLOW EOR

SHALLOW SWE DEEP EOR DEEP SWD

Shallow EOR formations are much higher pressured, on average, than SWD formations, but appear to "influence" nearby SWD.

Both Shallow SWD and EOR are much higher pressure on average that Deep SWD Formations.

Midland Basin Average Bottomhole Pressure Gradients (PSI/ft) are gradually increasing across the basin – all Well Types

Tip # 3: Avoid areas showing recent signs of <u>pressure</u> <u>increases</u>; you are likely to have more "pressure runway"

69% of active DMG blocks are increasing in BHP (Average BHP change, active blocks)

Energy Makers

Finding Relief from High Bottom-Hole Pressures

3P Report Chapters F, G, and H and I

1/2 Mile Radius of Review

2 Mile Radius of Review

Protection of Injection Intervals Isolation from Base of Groundwater

Interval Integrity/Isolation & Relative Risk of AOR "Penetrations" (wells)

Prove your proposed injection Interval in 2 – Mile AOR is Isolated... (else lower allowable BHP)

Score's "highest risk" well in terms of:

Age of well

□ Active Responsible Operator

Proximity to Injection

Completion / isolation / integrity of interval

Plugged or abandoned wells

Also check Freshwater protected

The proposed Texas RRC Algorithm identifies "worst well" in the 2-Mile AOR

We applied algorithms to each Block, generally **2.5 X** larger than a 2 mi radius AOR.

Any (<u>single</u>) high risk from the list, associated with one (1) well in the AOR, could result in a deducted .05 psi/ft. imposed pressure "buffer" from MSIP.

Therefore, the number of AOR penetrations also correlate with risk metrics

Likelihood of .05 psi/ft "buffer" – # of Penetrations is a Factor

Because the algorithm considers the "highest risk" well in the AOR, a higher number of penetrations is more likely to have at least one high risk well.

Even (1) risk factor is likely to result in a .05 psi/ft BHP pressure buffer requirement.

Delaware 3P Report

See Map Details at Conference

Data Completeness and Interval Protection

Algorithms require **Data Completeness** for every Penetration in 2 and ½ Mile AOR:

- Cement Data
- Casing Data
- Perforations
- ID of Base of Freshwater

If one or more fields are incomplete, this will flag the algorithm.

The 3P Report checks for Data Completeness, Every Penetration.

See Map Details at Conference

Ave Penetrations Needi	Investigation	per 2 mi AOR
0-10		
11-50		
51-100		

>100

Likelihood of .05 psi/ft "buffer" – from Old(est) wells*

Age of Well also drives the algorithm.

Even (1) really old well, (or a well without completion date*) is likely to result in a .05 psi/ft BHP pressure buffer requirement.

If completion date not available or data missing, algorithm assumes 125 years. 7/15/2025 Energy Makers 3P Report for Texas RRC Conference Attendees

Likelihood of .05 psi/ft "buffer" – Active Operator Unknown

Percent of Blocks per county with one or more wells missing "active operator".

Within the AOR, if a (single) well is identified without a known Active Operator, the algorithm will be impacted;

likely to result in the .05 psi/ft BHP pressure buffer requirement.

Likelihood of .05 psi/ft "buffer" – Orphan Wells

Texas RRC Orphan Wells as of January 2025.

Concentration is in /near Central Basin Platform and NW Shelf

Orphans in East Delaware, mainly

See Map Details at Conference

Orphan Wells and "Parallels" with old EOR Plays

See Map Details at Conference

EOR Well Density

Orphan Well Density

7/15/2025

Energy Makers 3P Report for Texas RRC Conference Attendees

Chapter J

Environmental Risks and

Considerations

3P Report: Best to Avoid (The Laundry List!)

Faults

Earthquakes

- Chown Surface Anomalies
- Plugged and Abandoned Wells
- □ Inactive Unplugged Wells
- UVells with no Active Operators
- Orphan Wells
- UWells lacking Cement, Casing,
 - Perforations, or base of Freshwater
- Older Penetrations

Areas with High BHP

Areas with Increasing BHP*

Areas with Low and Decreasing BHP*

Areas of High Density Injection*

Old EOR Wells*

Heavily faulted / karsted / heterogeneous / unknown confinement Zones*

(*not regulatory factors, Energy Maker's advises consideration)

7/15/2025

Screening for SWD **\$Performance** (3P Considerations)

- □ Margin between BHP and Confinement Frac Gradients
- □ <u>Moderate</u> Reservoir BHPs (not too high, or too low...)
- Interval Thickness
- Injection Density in AOR (Proves capacity...but if very high, can be a concern...)
- Average BPD for Area SWDs (Low, High, Average)
- Permitted Pressure & Volume Utilization for SWDs in area – is there runway?
- Texas RRC MDIV Calculations
- Texas RRC MSIP Calculations
- □ Area Surface Pressures relative to predicted MSIP
- Avoidance of Risk (previous slide)

Al Interpretation of O&G business...swimming in cash

7/15/2025

Summary

Industry consultants estimate a full **SWD** Permit application will cost 10X what it did a decade ago, due to rigorous permitting and extensive data gathering & mining requirements.

Rapid Screening approaches can alleviate most of the timeline and resource cost: quickly rule out target locations:

* unlikely to be permitted, or,

* likely to have poor overall performance.

We recommend THREE sets of Screening Thresholds:

1) RRC Permitting Requirements

2) Company consideration of possible environment / litigation Risks

3) Company consideration of desired SWD Financial Performance

For penetrations within the $\frac{1}{2}$ mile of Review needing remediation, your Company now has the option of paying the RRC for remediating activities, without incurring liability (a winwin).

For areas requiring Seismic Reviews, establish a monitoring and safety program to improve MDIV / potential financial performance for the SWD Asset.